Contents

This month’s newsletter includes:

Timely Tips – Anderson
New Protocol for “Reaching Out While Locked In” Beef Webinar Series – Bullock
New Video Series – I Bought a Farm…Now What? - Anderson
Kentucky Beef IRM Social Media – VanValin
Distillers Grains Substitutions – Lehmkuhler
Working Cattle While Socially Distant - VanValin
Controlling the BVD Virus in Cow-Calf Operations – Arnold
Kentucky Beef Cattle Market Update - Burdine

Timely Tips
Les Anderson, Extension Professor, University of Kentucky

Spring-Calving Cow Herd

- Continue supplying a high magnesium mineral until daytime temperatures are consistently above 60 degrees F.
- Improve or maintain body condition (BCS 5) of cows before breeding season starts. If necessary, increase energy intake even on pasture.
- Bulls should have a breeding soundness evaluation (BSE) well before the breeding season (at least 30 days). Contact your local veterinarian to schedule a BSE for your herd sires. They should also receive their annual booster vaccinations and be dewormed.
- Schedule spring “turn-out “working in late-April or early-May; i.e. at the end of calving season and before the start of breeding season. Consult with your veterinarian about vaccines and health products for your herd.

“Turn-out” working for the cow herd may include:

- Prebreeding vaccinations
- Deworming
- Replacing lost identification tags
- Sort cows into breeding groups, if using more than one bull
- Insecticide eartags (best to wait until fly population builds up)
“Turn-out” working of calves may include:

- Vaccinate for IBR-PI3, Clostridial diseases and Pinkeye
- Dehorn, if needed (can be done with electric dehorner and fly repellent during fly season)
- Castrate and implant male feeder calves (if not done at birth)
- Deworm
- Insecticide ear tags

- Consider breeding yearling replacement heifers one heat cycle (about 21 days) earlier than cows for “head-start” calving. Mate to known calving-ease bulls.
- Record identification of all cows and bulls in each breeding group.
- Begin breeding cows no later than mid-May, especially if they are on high endophyte fescue. Cows should be in good condition so that conception occurs prior to periods of extreme heat.
- Consider synchronizing estrus in all cows. Exposing late-calving cows and first-calf heifers to a progestin (MGA feed or CIDR device) for 7 days before bull turn out increases pregnancy rates.
- Choose best pastures for grazing during the breeding season. Select those with the best stand of clover and the lowest level of the fescue endophyte, if known. Keep these pastures vegetative by grazing or clipping. High quality pastures are important for a successful breeding season.
- If using artificial insemination:
 - Use an experienced inseminator.
 - Make positive identification of cows and semen used. This will permit accurate records on date bred, return to heat, calving date and sire.
 - Good handling facilities and gentle working of the cows are essential.
 - Choose AI sires that will meet your goals and resist the temptation to get your cows bigger.
- Observe breeding pastures often to see if bulls are working. Records cows’ heat dates and then check 18-21 days later, for return to heat.

Fall-Calving Herd

- Pregnancy check the cow herd. Remove open cows at weaning time.
- Plan marketing program for calves. Consider various options, such as maintaining ownership and backgrounding in a grazing program, or precondition and sell in a CPH-45 feeder calf sale.
- Initiate fly control for the cows when fly population builds up.
- Calves may be weaned anytime now but you can take advantage of the spring grass by leaving them on the cow a while or weaning and grazing.

Stockers

- Keep calves on good pasture and rotate pastures rapidly during periods of lush growth. Manage to keep pastures vegetative for best performance.
- Provide mineral mix with an ionophore.
- Implant as needed.
- Control internal and external parasites.

General

- Harvest hay. Work around the weather and cut early before plants become too mature. Harvesting forage early is the key to nutritional quality. Replenish your hay supply!
- Rotate pastures as needed to keep them vegetative.
- Clip pastures to prevent seedhead formation on fescue and to control weeds.
- Seed warm season grasses this month.

New Protocol for “Reaching Out While Locked In” Beef Webinar Series

Beef Extension Group

We have been working diligently with Ag Communications (thanks Chad Jennings) to correct our issues from the Beef Webinar last Tuesday that was Zoom Bombed and think we have established a protocol to achieve more secure and potentially uninterrupted sessions in the future.

1. We are forced to enable a password for participants to enter, therefore, everyone must register to get the password. If you have already registered there is no need to re-register you will get a notice the morning of the meeting with the direct link and the password. If you have not done so, please send your name and county to dbullock@uky.edu.
2. It is ok to send this notice to anyone you think would be interested, but please do not post this on any public sites, such as Facebook. Agents feel free to forward via your e-newsletters or to targeted producers.
3. We are implementing the Waiting Room. Therefore, when you sign in it will place you in the waiting room and you will not be connected to the session until immediately before it starts.
4. We will lock the session preventing anyone from joining 5-7 minutes after the start, so please be on time or you will have to watch the recording later. Therefore, if you have technical trouble and have to log out, you will not be able to rejoin (enjoy the video later).
5. You will not be able to use your audio; you must type in any questions into the Chat and that will only go to the host. We will read the question and provide the answer.
6. DO NOT turn your video on. We will be scanning for videos and kick anyone off that has their video on to prevent or limit the risk of obscene info from being shared.
7. If we have any suspicion that someone is trying to cause trouble they will be removed and cannot rejoin. If we inadvertently kick anyone out, we apologize, but you will be able to watch the video later.
8. If we get into a situation like last time, we will shut down immediately and contact you with a new plan. Plan B is to switch systems entirely and see if we can have better success.

We are rescheduling Dr. Anderson session “Preparing Cows for the Breeding Season” for Thursday, April 23 at 8:00pm EDT. The same protocol as above will be used, you will get an email that day with the necessary information if you are registered.

We thank you all for your understanding and patience as we deal with this very unfortunate situation. Our philosophy is to fight back; we will not let these pathetic individuals win. They won the last battle, but they will not win the war.

See you all Tuesday!

Beef Extension Group - Darrh, Jeff, Katie, Kevin and Les

April 21, 2020 Managing Calves for the Market – Kevin Laurent, Extension Specialist
April 23, 2020** Preparing Cows for the Breeding Season – Les Anderson, Extension Professor
April 28, 2020 Recipe for Profit for Backgrounding and Stocker Enterprises – Jeff Lehmkuhler, Associate Extension Professor
May 5, 2020 Utilizing Technology to Enhance Cattle Management Practices – Katie VanValin, Assistant Extension Professor

NOTE: This is the make-up session and will be held on Thursday

New Video Series – I Bought a Farm…..Now What?

Les Anderson, Extension Professor, University of Kentucky

A landowner in Woodford County contacted me about two months ago asking for guidance on utilizing some property that he and his brother own. His family has not been Extension users in the past and he knew I was “in Ag”. After several discussions with the landowners, the UK Beef IRM Team has decided to develop a new series documenting the numerous decisions and the process of taking a piece of property and transforming it into a viable beef enterprise. These landowners had cattle when they were kids but are inexperienced. The property is typical of southern Woodford County; rolling hill farm, thin soil in spots, decent fence, no handling facilities, a pond, a cattle waterer on city water, and, of course, a tobacco barn. This series will be a challenge to shoot while being socially distant and will include mainly interviews with Extension Specialists, ANR Agents, and other Ag professionals. We plan to post videos twice a week (Tuesday and Thursday) to the UK Department of Animal and Food Science YouTube page. The first four episodes are:

 - Episode 1: Introduction – Anderson
 - Episode 2: Where do I get information? – Anderson and Adam Probst
 - Episode 3: Land maintenance discussion – Anderson and Adam Probst
 - Episode 4: Enterprise analysis – Anderson and Kenny Burdine

Upcoming episodes include web soil survey, developing a grazing plan, developing a workable handling facility, finding cattle, and receiving cattle. We think it will be interesting and hope it will be “must see” viewing for our followers.

Kentucky Beef IRM Social Media

Katie VanValin, PhD, Beef Extension Specialist, University of Kentucky

Although we are more isolated more than we have ever been, our extension team is working hard to stay as connected as ever to our clientele. We recognize the challenges facing every single community in our Commonwealth and we want to make sure we are as accessible as we can be while ensuring everyone’s health and safety!

To help us in this effort, we have expanded our social media outlets, and are working on developing timely content, so please give us a like or a follow!

- Facebook, Instagram, Twitter: KyBeefIRM

We look forward to the days when we can come out to your farms and into your county offices and greet you with a smile and a handshake, but for now we will continue to work creatively to continue to serve you!

Distillers Grains Substitutions
Jeff Lehmkuhler, Associate Extension Professor, University of Kentucky

These last few weeks have been nothing close to a normal spring. Recent events have taken their toll on the markets. The May corn CME contract was trading in the $3.80’s in early March while last week it fell to the $3.30’s. The April fed cattle contract with early March prices being in the $105-$108 area and now near $90. Closing of packing plants have also played havoc on beef markets with cull cow prices tumbling. The impacts are widening as we come into April.

Several fuel ethanol plants have shut down during recent weeks amid the oil price war and COVID-19 outbreak. This will have a ripple effect as corn purchases are halted and the production of distillers grains is reduced. Dried distillers grains spot bid prices have increased nearly $30/ton since the end of March for Iowa. Availability of distillers grains may be limited or unavailable during plant shutdowns. So, the question is what else can I feed in place of soybean meal?

Other plant-derived protein supplements such as corn gluten feed, cottonseed meal, soybean meal, and linseed/flaxseed meal could be potential alternatives. Commercial protein supplements from feed companies are also options. When considering options, price the feedstuffs based on cost per unit or pound of protein. For most dry feeds, the moisture content will be about 10% and relatively constant. For this example, the assumption is made the feeds are similar in moisture as they are dry feeds. Dried distillers grains may have a guaranteed crude protein percentage of 28% as-fed while cottonseed meal may have the minimum crude protein listed as 41%. The two feeds are quoted at a price of $275 and $365 per ton for distillers and cottonseed meal, respectively for this example.

Step 1) Determine the pounds of crude protein in a ton.
\[
\frac{2,000 \text{ lb}}{\text{ton}} \times \frac{28 \text{ lb CP}}{100 \text{ lb feed dried distillers grains}} = 560 \text{ lb CP/ton DDG}
\]
\[
\frac{2,000 \text{ lb}}{\text{ton}} \times \frac{41 \text{ lb CP}}{100 \text{ lb feed corn gluten feed}} = 820 \text{ lb CP/ton CGF}
\]

Step 2) Calculate the cost per pound of CP
\[
\frac{\$275}{\text{ton DDG}} \div \frac{560 \text{ lb CP}}{\text{ton DDG}} = \$0.49 \text{ / lb CP}
\]
\[
\frac{\$365}{\text{ton CGF}} \div \frac{820 \text{ lb CP}}{\text{ton CGF}} = \$0.45 \text{ / lb CP}
\]

Step 3) Determine the substation ratio
Currently feeding 4 lbs of DDG which provides 1.12 lbs CP (4 lb X 28% CP/100)
Ratio CP DDG/Cottonseed meal = 28% CP/41% CP = 0.68
4 lbs DDG X 0.68 = 2.72 lb cottonseed meal substituted for DDG

Step 4) Check protein supply
2.72 lb cottonseed meal X (41% CP / 100) = 1.12 lb CP

In this example, the cottonseed meal is a slightly better value on a price per pound of crude protein basis at $0.45/lb. When making the substitution, less cottonseed meal is fed due to the higher protein content. This doesn’t account for other nutrient differences such as energy content. You can search for energy (TDN, NEm, NEg) values in extension publications. If the feedstuffs in question vary greatly in energy content this needs to be taken into account. Cottonseed meal contains approximately 15% less energy than dried distillers grains based on reported book values.

Assessing the feeding value is often conducted using corn and soybean meal as reference feedstuffs for energy and protein. The cost per unit of protein and energy are determined for the reference feeds. The feed in question is then valued based upon its protein and energy content. For instance if corn was $160/ton and
soybean meal was purchased for $500/ton, the value of cottonseed meal and dried distillers grains are $360 and $283, respectively. This means that if either feed can be purchased for less than these values they would be a better value than using corn and soybean meal. Therefore, in our comparison of DDG and cottonseed meal, the distillers grains has a slight advantage over cottonseed meal valuing both protein and energy. However, the prices used in the example would suggest that cottonseed meal under the assumed conditions would not greatly increase the cost of gain if distillers grains were unavailable.

When considering substitutions for feedstuffs that are in short supply, work with a nutritionist to develop your new rations. This will ensure the diets are balanced to meet the nutritional needs of cattle and avoid potential risks for digestive upsets. We will continue this discussion in the next article when we look at non-protein nitrogen alternatives. For more information, contact your local Extension office or consult your nutritionist.

Working cattle while socially distant

Dr. Katie VanValin, Assistant Extension Professor, University of Kentucky

Amid these unprecedented times, mother nature has stayed relatively consistent and spring has started to come around (although I heard there were snow flurries in parts of the state this week). Nevertheless, days are getting longer, and the temps are getting warmer. As we all know the agriculture industry is essential, and the work that we all do has not stopped during this global pandemic. However, we can all agree that things are not business as usual. We’ve all been at this socially distancing thing for a month or so now, so I bet we are all getting pretty good at it by now; however, some scenarios make staying socially distant more difficult than others. Along with these beautiful spring days ahead, cattle are going to need to be worked, which is one of those scenarios where staying socially distant can be challenging. Here are a few recommendations or things to think about, to keep everyone in our community healthy and safe.

1) Plan ahead - It’s likely that cattle working facilities were not designed with human social distancing in mind. Think about ways to safely work in the facility while maintaining a 6-foot distance (or about 1 cow length).
2) Give yourself time - When we get in a rush it’s easy to fall into old habits, so allow some extra time if having to implement a new strategy to include social distancing.
3) Try to keep your crew as small as possible, while being able to maintain safety of both handlers and cattle.
4) Whenever possible keep your crew to members of the same household, or those that have already been working closely together over the last several weeks.
5) Follow CDC guidelines for use of personal protective equipment (PPE) and hygiene. We have always made jokes about the immune systems of those of us who were quite literally raised in barns, but this virus is novel, making all of us vulnerable. Recognizing that it can be difficult to keep a 6-foot distance, highlights the importance of PPE. Avoid touching your face with unclean hands and sanitize commonly touched surfaces.

I commend the resiliency of our agriculture community as we navigate these challenging and turbulent times. Continue to stay safe and healthy.

Controlling the BVD Virus in Cow-Calf Operations

Dr. Michelle Arnold, UK Veterinary Diagnostic Laboratory

“BVD” or “Bovine Viral Diarrhea” virus causes the most common and costliest reproductive problems in Kentucky cow herds. Control of the BVD virus is through 3 equally important methods: 1) surveillance
(testing) to detect it, 2) vaccination to keep it in check and 3) biosecurity measures to reduce virus entry into the herd. The following series of frequently asked questions (FAQs) are designed to help understand the ways in which BVD enters a beef herd and how best to recognize and mitigate its effects.

Question 1: What does disease due to BVD virus look like in a cow-calf herd?

One of the main problems with this virus is its name. Although BVD stands for “Bovine Viral Diarrhea”, rarely does an animal show any symptoms of diarrhea. Instead, cow-calf producers may detect one or more of the following reproductive problems in the herd:

1. Poor reproductive performance/more open cows despite good nutrition and fertile bulls;
 a. Decrease in overall pregnancy rate and % pregnant after the first service. This “delayed breeding” is often blamed on the AI technician, a dud bull, hot weather, or fescue when really it is a viral problem.
 b. Abortions (at any stage of gestation), stillbirths, neonatal deaths, and weak newborns.
2. Physical abnormalities (dummy calves, eye defects, cleft palate) in newborns;
3. Calf losses due to pneumonia or scours before weaning.

It is important to realize that BVD virus in a herd may not have easily recognizable “classic signs” such as an increased number of abortions or birth defects. It may simply look like fewer mature cows pregnant at pregnancy check or finding cows open that should be calving.

Question 2: How does BVD virus get into a cow-calf herd?

Research has proven that the #1 cause of BVD virus entering a herd is through the purchase of pregnant females, especially first calf heifers, without proper testing for the virus. Testing must include both testing the pregnant female for BVD and testing her calf after birth for “PI” status. All newly purchased cattle, regardless of age, should be tested for presence of the virus and isolated from the herd until results are available.

Other possible sources of the BVD virus in a cow/calf herd include introduction of bulls into the herd without testing for BVD, fence line contact with feeder calves or a neighboring herd, and blood borne transmission through contaminated equipment. Show cattle can bring the virus back when they return to the farm from fairs and exhibitions. A calf purchased from a sale to graft on a cow or feeder calves purchased at auction may be PI.

Question 3: If I purchase a pregnant cow or heifer and she tests BVD negative, why would I need to test her calf at birth?

Although the pregnant cow is negative, she may be carrying a persistently infected (“PI”) calf that will test positive.

If a pregnant cow or heifer is infected with the BVD virus between 42-125 days of gestation, she will experience a “transient BVD infection” which is often mild, or she may show no symptoms at all. However, the virus will also cross the placenta, infecting her unborn calf. When this calf is born, it is “persistently infected” or “PI” and is a “carrier” and “spreader” of the virus for its lifetime. Most PIs are born to heifers who were naïve (poorly vaccinated) at the time of BVD virus exposure. The dams that experience a short, transient infection while pregnant will be negative when tested for BVD but their calves, if PI, will be positive. However, a PI dam will be positive when tested for BVD and her calf will be positive, too.
Bottom line: If a calf tests positive, the dam can be either positive or negative! But, if a calf tests negative, the dam can only be negative. Talk to your vet if you need further clarification.

Figure 1: What route does the BVD virus take in order to produce a PI calf? Over 90% of the time, it is through a PI negative dam.

<table>
<thead>
<tr>
<th>BVD PI Testing can be Confusing!</th>
</tr>
</thead>
<tbody>
<tr>
<td>When testing calves for PI:</td>
</tr>
<tr>
<td>If calf tests positive, then test dam. The dam’s result may be either negative or positive</td>
</tr>
<tr>
<td>If calf tests negative, no need to test dam. The dam’s result will be negative</td>
</tr>
<tr>
<td>When testing cows (dams) for PI:</td>
</tr>
<tr>
<td>If dam tests positive for PI, her calf and every calf she has will always be positive.</td>
</tr>
<tr>
<td>If dam tests negative for PI, must test her calf. The calf may be either positive or negative.</td>
</tr>
</tbody>
</table>

Question 4: Why is it important to identify PI calves in the herd?
“PI” animals are the major reservoir for the virus and the reason it continues to exist. A BVD-PI calf is born with the BVD virus and sheds virus continuously everywhere it goes throughout its life. PI animals are the primary source of virus transmission because they shed an extremely high number of virus particles throughout their lives in feces, urine, saliva, and nasal discharge. If a PI survives to adulthood, virus is also secreted in milk, semen, uterine secretions, and aborted fetal membranes. A PI cow will always have a PI calf. The virus is deposited in watering troughs, feed troughs, round bales of hay, cattle trailers—virtually everywhere the animal goes—and then picked up by the other cattle in the herd, either by mouth or nose. What is largely misunderstood is the effect one BVD-PI calf in the pasture can have on mature cows during breeding and early pregnancy. The most critical 30-day timeframe in a pregnancy is 60-90 days of gestation. If one PI calf is out in the pasture constantly shedding virus during breeding season, many (if not all) of the cows/heifers will be exposed to the virus during this high risk time, resulting in early embryonic deaths, delayed breeding, abortions, malformed calves, and development of the next generation of PI calves. In addition, calves born in the same group as the PI calf may have more sickness (scours, summer pneumonias) due to the immunosuppressive effects of constant virus exposure from the PI calf. Remember, all PI animals are born as PI calves and will remain PI for life.

Question 5: How are PI calves identified? Do they look different?

PI calves may appear stunted and grow poorly or may look completely normal. For example, the top bull in the 2000 Wisconsin State Fair was tested and found to be PI. Although it is often assumed PIs will die young, some survive well into adulthood and have calves or can be fed out to slaughter weight.

Testing for persistently infected (PI) animals is easy and inexpensive with the BVD ELISA test. The most commonly used sample for identifying PI cattle is an “ear notch” skin sample. Blood (serum) can also be used but not in calves less than 3 months old. If the test result is negative, that animal is negative for life and will not need testing again. Any BVD ELISA positive test result should be confirmed by segregating the animal and retesting a second ear notch or blood sample drawn 3 weeks after the first sample. True PI animals will still be positive after 3 weeks while those animals with a short-term infection (transiently infected or “TI”) will test negative.

Question 6: What is the best way to test a beef herd for PI animals?

Work with your veterinarian to come up with a plan for testing and what actions will be taken with the results. To test the herd, the following steps are recommended:

1. Test all calves at an early age - Calves should be at least 2 weeks old before taking an ear notch sample. If using a controlled breeding and calving season, test all calves after the last calf is born but before placing the bull in a breeding group in order to remove PI calves from pasture before breeding begins. Ear notches can be stored in the freezer and submitted at one time if desired.
2. If a calf is confirmed positive, then test the dam. Remember, a calf can be positive for PI but the dam will usually be negative (see Question 3 for the explanation).
3. Test any cow without a calf at her side. If pregnant, it is acceptable to wait and instead test her calf when it is born. If calf is negative, then the dam can be assumed negative and does not need to be tested.
4. Test all bulls and replacement heifers (purchased or raised).
5. Purchased Pregnant Cows-Quarantine and test purchased cow and, if negative, she can join the herd. However, bear in mind her calf could still be a PI. Test her calf when it is 2 weeks of age or older, the sooner the better.
6. **Remember PIs are considered defective and there is a legal, moral and ethical obligation to either feed them out for personal consumption or euthanize and dispose of these animals without sending/returning them to commerce. Animals that test positive are not to be sold, given away or transported without approval of the State Veterinarian.**

Question 7: Since I vaccinate my cows annually, is my herd fully protected from BVD?

Unfortunately, no. Vaccination does not equal immunization nor prevention of infection! “Vaccination” is drawing up a vaccine in a syringe and injecting it into an animal. “Immunization” is the animal mounting an immune response to the vaccine. “Prevention of Infection” is the goal but is never 100% guaranteed, because there is no such thing as 100% immunity.

Vaccines against BVD virus (including those with Fetal Protection claims or “FP” vaccines) will reduce the chance of fetal exposure but vaccines do not always prevent this from happening. The current BVD vaccines available contain BVD virus 1a and BVD virus 2a strains. These vaccines were more effective when strains 1a and 2a were the most prevalent types but now Type 1b is the dominant strain. Problems within the animals themselves may prevent a good immune response. Animals that are sick when vaccinated, stressed, in poor nutritional status or too young to produce antibodies will not be protected with vaccination. A PI calf within a herd will suppress the immune response from vaccine in all calves it contacts. Finally, yet importantly, management errors are an all-too-common cause of vaccine failure.

These may include:

- Not following label directions (for example, not giving 2 doses of killed vaccine)
- Improper mixing of vaccine (shaking violently rather than swirling)
- **Failure to use modified live vaccine within 1 hour of mixing (VERY COMMON ERROR)**
- Inappropriate storage either before or during use of the product (must be kept cool)
- Use of expired vaccine
- Use of soap, detergent, or disinfectants to clean the inside of multi-dose syringes used to inject modified live vaccine (inactivates vaccine)

Question 8: Which vaccine is better, modified-live or killed? When should vaccines be given for optimal protection from BVD?

The highest risk for a bovine pregnancy is the 30-day timeframe from 60-90 days of gestation. Therefore, the goal is to maximize immunity during the first trimester of pregnancy. Mature, breeding-age cattle should be vaccinated 4-6 weeks prior to breeding with a combination viral respiratory vaccine (IBR, BVD, PI3, BRSV) with *Campylobacter fetus* (Vibriosis) and 5-way Leptospirosis included. Follow label directions carefully.

The question of whether to use modified live or killed vaccine is not an easy one to answer. Many popular beef magazines offer articles concerning what types of vaccines work “the best” or are “safest” according to the latest research. The truth is, there are tradeoffs when it comes to vaccine selection. Modified live vaccines (MLVs) offer better and more effective pregnancy protection but the IBR portion of the vaccine can impact conception rates if given too close to breeding season. If using timed artificial insemination (AI), experts recommend administering MLV vaccines 45 days pre-breeding in order to allow 2 estrus cycles prior to insemination. In addition, MLV vaccines can cause abortions if given to pregnant cattle without strict adherence to label directions. Killed vaccines, on the other hand, are safer but are not nearly as good at preventing fetal BVD infection. A herd with excellent biosecurity and at very low risk can err on the side of safety and use killed vaccine. However, herds that purchase animals (including bulls) or herds in close
proximity to stocker cattle, unvaccinated neighboring cattle, or any other probable exposure should err on the side of efficacy and choose modified live. Another option is to administer two doses of MLV vaccine to open heifers (at weaning and a second dose 6 weeks prior to breeding) with annual revaccination using a killed vaccine. This combination stimulates excellent protection without the risk of MLVs although this protective response will diminish after several years. Finally, and perhaps most importantly, cattle herds are unique entities with different risks for disease on every farm so work with a veterinarian to choose the right vaccines for the herd.

Kentucky Beef Cattle Market Update

Dr. Kenny Burdine, Livestock Marketing Specialist, University of Kentucky

It was another light week in terms of marketings in KY and this has largely been the case since the end of March. This really is a trend industry-wide as feedlot placements and cattle slaughter are both running well below expected levels. Several processing plants have announced temporary closures and a lot of others are running at reduced capacity, likely to take measures to reduce the likelihood of closure in the future. Of course, there are significant incentives for processing plants to resume operations as soon as they practically and safely can. It was inevitable that cattle would back up in the system as COVID-19 impacts lingered, but the longer it continues the more it will stretch out the length of the recovery. This is definitely something to watch in the coming weeks.

As I write this on Friday April 17th, CME© feeder cattle futures are about where they ended last week. Fall contracts are actually a little higher and have moved into the low $130’s per cwt. For the current week, the price of an 850 lb M/L #1-2 steer at Kentucky auction markets fell by about $1 per cwt. Calf prices improved slightly with the price of a 550 lb M/L #1-2 steer increasing by about $3 per cwt. Both series can be seen in figure 1.

Figure 1: Feeder Steer Prices since the First Week of January

Kentucky Average (dollars per hundredweight)

Cull cow and slaughter bull prices were stronger this week. This was actually the first weekly increase in cull cow prices since the end of March. The state average price for 80-85% boning cows increased by nearly
$6 per cwt and is now in the mid-$50’s (see figure 2). Cull cow prices typically make their highs in May or June. I’ve almost quit comparing prices to year-ago levels, but did notice that current cull cow price is actually about $8 per cwt higher than this time last year. There is typically some flexibility on the timing of moving cull cows this time of year with spring grass coming on.

Figure 2: 80-85% Boning Cow Prices since the First Week of January

Kentucky Average ($ per cwt)

![Figure 2: 80-85% Boning Cow Prices since the First Week of January](image)

Source: USDA-AMS, Livestock Marketing Information Center, and Author Calculations

A lot of fall calving herds are weaning calves around this time and those calves are selling for more than $100 less than I would have predicted at the first of the year. The price impact per head is likely even greater on heavy feeder cattle – I’d probably put it somewhere in the $125-$175 per head range. These are significant hits to incomes that will not be easy to recover from. Producers should also keep an eye out for any announcements from USDA about any direct payments to cattle producers from the CARES Act that may help offset a portion of these losses.