Early Detection of Potential Nutrition and Management Problems in Dairy Herds Using DHI-Monthly Milk Production and Composition Data By: Donna Amaral-Phillips, Ph.D. When managing your dairy herd, it is critical to diagnose potential problems early and implement changes in management to correct these potential issues. Critically looking at your production records each month can help you detect problems early or when they arise and put in place measures to correct the problem. This month's article on how to use your DHI records processed through Dairy Records Management Systems (DRMS) at Raleigh, NC, looks at how you can use monthly milk production and milk composition data | | HERDO | DODE | DATE TE | CHEC | BREED | STRING | | | | | | IDENTIF | ICATIC | N AN | GEN | ETIC | | | | | | | _ | |---|---|--|---|--|--|--|--|---
--|--|--|--|---|---|--|--|--|--|---|--|---|--------------|---------| | | 55-99-9 | | - | | | SIMMS | AGE | NUMBER | AVG. AGE | NUM. IDE | NTIFIED BY | N.MER
D | WITH | AVERAGE | MERIT 9 |] [| | MERIT S | 5 | ć | ENETIC PE
F SERVICE | | | | | | | 12-27 | | НО | | | ANIMALS | YR-MO | SIRE | DAM | DIANCES | MERT S | ANIMAL | SIRE | 1 1 | | 1000 | -1 | PROGEN | LA. | | HER | | | STA | GE OF | LACTA | ATION | PROFILE | | 0-12 | 80 | 0-07 | 80 | 58 | 1 | 38 | +176 | +374 | 1 1 | FM | | щ | TESTED | TESTE | D AL | BUL | | | | - 1 | 41 | 101 LAC 12 | 200
TMB: 300 | TOTAL | 13+ | 85 | 1-09 | 66 | 70 | 1 L | 41 | +105 | +261 | l L | BRED | HERD
TO | | | 4 | - | | | | | THR/
40 | 198U
160 | 199 | 365 | AVERACE | REPLACE -
MENTS | 165 | 1-02 | 146 | 128 | | 79 | +139 | +318 | J L | NUMBER
BULLS | | | | 1 | - | | | | ST LAG | 8 | 4 | 19 | | 6 48 | 1ST LACT | 68 | 2-01 | 24 | 43 | 1 | 11 | -209 | +230 |] [| MERIT | 5 | | | +44 | _ | | | NUMBER | IND LACT | 7 2 | 11 | 15 | 4
 4 36 | 29 | | | | | | | | | 1 [| RXME | REFNIE | ERITO . | | 8 | 5 | | | MILKING | 3+ LACTS | 5 | 5 | 15 | 1 | 7 33 | 3 A | Vier | are c | urre | nt te | st dav | , mi | 11- | | 96/00 | N-AI | | _cu | RREN | T_SON | MATIC | <u></u> | | | ALL LACT | 15 | 20 | 49 | 16 1 | 7 117 | ALI | | | | | | | | | | 53 | c | ELL | cou | NT SL | JMM/ | ٩R | | AVERAGE | 191 LAGT | 57 | 68 | 64 | 42 3 | 5 55 | 50 | rodi | etion | hv | daws | s in m | silk s | and | | DCF | R MLK | | | ODUCTION
OM SCC | N MILK - | 5, | 50 | | DAILY | 240 | 0.4 | 70 | 74 | 40 4 | 0.5 | <u> </u> | nout | ictioi | ıоу | uays | 9 111 11 | IIIK 6 | and | | | 100 | | | T PERIOR | \$ 2 | 1, | 24 | | MILK
PROD- | 3+ LACTS | 83 | 102 | 63 | 15 3 | 3 64 | T 1. | actat | ion n | uml | ner. | | | | | | BODY | | | % cow | s scc sc | ORE | | | UCTION | ALL LACT | 69 | 78 | 66 | 40 3 | 6 60 | lactation number | | | | | | | | | | | 0.1 | .2.3 | 4 | 4 5 6 | | | | $\overline{}$ | IST PAT | 4.1 | 3.6 | 3.5 | 4.3 4. | 3 3.9 | | cows | MCM. | _ | MILK | FAT | PROTEIN | MILK | FAT | PROTEI | WEIGH | HT B | LOW | 142,000-
240,000 | 284.000-
940.000 | 564,000- | ui | | | ACT PROT | 3.1 | 2.9 | | 3.8 3. | | 1ST LACT | 68 | 25 | 64 6 | 80 2053 | | 629 | +2433 | +29 | +63 | | | 68 | 13 | 11 | 6 | ۳ | | x | man FAT | | 4.0 | | 5. 2 4. | | 2ND LAC | | | 4 . | 78 2039 | | 638 | +1616 | +47 | +53 | | | 82 | 6 | 9 | | + | | FAT | | 3.0 | 3.3 | | 4.0 3. | | 3+ LACTS | | | | 76 1923 | | 613 | +359 | +39 | +30 | | _ | 52 | 21 | 15 | 6 | ۰ | | ٠F | FAT | 0.0 | 3.5 | | 3.5 4. | | ALL | | - | | 70 2015 | - | 628 | +1623 | +37 | +51 | - | _ | 69 | 13 | 11 | 4 | | | | SETS CONT | 3.2 | 3 | | 3.2 3. | | LACTATION | 100 | 30 | / 5 | 0 201 | 11 141 | 020 | .1020 | .07 | | 172 | .0 | 00 | 10 | - 1.1 | | _ | | _ | PAT | 4.3 | 3.8 | 3.71 | 4. | | | | | | | VEAD | | | | | ENT | COE | | ID 15 | FT TH | e u | -0 | | | ALL PAT | 3.1 | 3.1 | | | 4.0 | | | | | | | | | | | MRER | OF CO | WS LE | T THE H | FRD IF | IE NE | -17 | | - 1 | Hept | | 157 | | | - 40 | _ | \ver | age c | urre | nt te | st day | v % | fat a | ınd ⁽ | % | T | | \top | INJ | JRY | | Т | | | 191 LAGT | 77 | | | | | | | | | | | | | | | . MA | IST. UD | | ECS OF | ER EASE | DIED | ١, | | scc | SWD LACT | 27 | 74 | | 177 10 | | -1 | rote | in hv | day | s in | milk | and | lacta | atioi | ı | - | - | _ | | | - | ╀ | | ACT | 3+ LAUTS | 63 | 45 | 657 | 400 18 | 7 340 | | | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 5 111 | | | 10000 | <i>a</i> 1101 | - | - | • | - | _ | - | += | + | | | ALL LAGT | 63 | 79 | | 231 12 | 2 227 | 2N | | | , | 5 111 | | | 10.00 | <i>a</i> 1101 | - | | # | # | # | | 3 | + | | SCC | NAMES | 63 | 2 | 18 | 6 | 2 227 | | numb | | | <i>5</i> III | | | 1000 | | - | _ | 2 | | _ | 2 | 3 | + | | SCORE
> 3.9 | NUMBER | 1 | 10 | 18
37 | 6
38 1 | 2 227 | 2N | | | 4 5 | + 18 | | ++ 04 | 5 42 | | :0 4 | | 3 | | _ | 2 2 | 3 | + | | SCORE
> 3.9 | NUMBER | 1 | 2 | 18 | 6
38 1 | 2 227
3 29
8 25 | 31 T | numb | er | 4 5 | + 10 | L/11. | F# 00 | 42 | % LEFT HER | :0 4 | | 3 | ons | _ | | 3 | + | | SCORE
> 3.9 | PERCINT | SCC (I | 10 | 18
37
1,00 | 6 38 1.0) | 2 227
3 29
8 25
Y | 2N I | numb | ction | AND M | + 10 | S SUMM | IARY | 42
42 | | DFOR IN | VOLUNTAR
SEMATE | 3
TY REATO | | ARY | 2 | 3
4
12 | 186) | | > 3.9
WE I G | PERCINT | SCC (I | 2
10
NEAREST | 18
37
1,00 | 6 38 1.
0)
AY AVERACES | 2 227
3 29
8 25
Y | 2N T | numb
PRODU | CTION A | AND M | IASTITI: | S SUMM | IARY
DLLING YEAR
ERD MERA | 42
42 | % LEFT HER | DFOR IN | VOLUNTAR
VOLUNTAR
SEMATE
WS 500 50 | 3 ERL SEL | 7,8.9 | | | 3
4
12 | 186) | | SCORE
> 3.9
WE I G | PRODUTE
PERCENT
HTED | SCC (I | 2
10
NEAREST | 18
37
1,00 | 6 38 1.0) | 2 227
3 29
8 25
Y | ZN T | PRODU | ction | AND M | + 10 | S SUMM | IARY | 42
42 | % LEFT HER | DICK N | VOLUNTAR
SEMATE | 3
TY REATO | | ARY
AVG. | WT. AVG | 3
4
12 | MBE HE | | SCORE
> 3.9
WE I G | PERGINT
HTED
STE
ST | DAYS IN TEST PERIOD 29 | 2
10
NEAREST
NUMBER
COWS IN
HERD ON
TEST DAY | 18
37
1,00
TEST 0
MILL
DAYS IN
MELK | 38 1:
0)
AY AVERACES
KING COWS | 2 227
3 29
8 25
Y
STANDARD
150 DAY
MILK
2 62.1 | ZN 31 AL LACTATION EARLY TEST PERSOD PERSIST-INDEX 1 101 | PRODU | CTION AT TEST DAY A GALL CO | AND M NVERAGES DWS A FAT 4.1 | ASTITI: | S SUMM | IARY DILING YEAR FAT 2 65 | RLY ICE PROT. 7 533 | % LEFT HER
6,1,2,3
91,000
40,000 | 5 00 4
14 140 000
201 000 | SCHATE
SCHATE
WE SEE SH
SH, SEE
MA, SEE | TY REASON | 7.8.5
Over
1.13 M | ARY
SCC | WT. AVC
ACTUAL:
SCC | 12 | (SE) | | SCORE
> 3.9
WE I G
DA
O
TE:
MONTH E | PERGINT
HTED
STE
ST | SCC (I | 2
10
NEAREST
NUMBER
COWS IN
HERD ON
TEST DAY | 18
37
1,00
TEST 0
MILE
DAYS IN | 38 1:
0)
AY AVERACES
KING COWS | 2 227
3 29
8 25
Y
STANDARD
150 DAY
MILK
2 62.1 | ZN TO ALL LACTATION PERSON PERSON PERSON PERSON LINDEX | PRODU | CTION / | AND M NVERAGES DWS A FAT 4.1 | ASTITI: | S SUMM | IARY DILING YEAR FAT 2 65 | RLY ICE PROT. 7 533 | % LEFT HER
6,1,2,3
98,000
94,000 | 5 000 4 40,000 300,000 | SCHATE
SCHATE
SCHARE
SCHARE
SMA, SIC
MA, SIC
MA, SIC | TY READO | 7,8,9
CVER
1.13 M | ARY
SCC
SCORE | WT. AVC
ACTUAL
SCC
329 | 12 | (SE) | | SCORE
> 3.9
WE I G
DA
O
TE:
MONTH E | PERGINT
PERGINT
HTED
STE
ST
DROPPED | DAYS IN TEST PERIOD 29 | 2
10
NEAREST
NUMBER
COWS IN
HERD ON
TEST DAY | 18
37
1,00
TEST 0
MILL
DAYS IN
MELK | 6 38 1:00) AY AVERACES KING COWS MILK 57. 58. | 2 227
3 29
8 25
Y
STANDARD
12ED
150 DAY
MILK
2 62.1 | EARLY TEST PERSO PERSIST- INDEX 1 101 1 96 | PRODU | CTION AT TEST DAY A GALL CO | AND M
OVERAGES
OWSI
3 FAT
4.1
4.3 | ASTITI: | S SUMM | IARY DILING YEAR ERD AVERA FAT 2 65 | PROT. 7 533 | % LEFT HER
6,1,2,3
91,000
40,000 | 5 00 4
14 140 000
201 000 | SCHATE
SCHATE
WE SEE SH
SH, SEE
MA, SEE | TY REASON | 7.8.5
Over
1.13 M | AVG.
SCC
SCORE
3. 2 | wr. avg
actual
scc
329
253 | 12 | (SE) | | SCORE > 3.9 WE I G DA O TE MONTH E 1-2 2-2 | PERCENT
PERCENT
HTED
ST
ST
SHOPPED
7-11 | SCC (I
DAYS
IN
TEST
PERIOD
29 | 2
10
NEAREST
NUMBER
COWS IN
HEND ON
TEST DAY
159
156 | 18
37
1,00
TEST 0
MILE
149
150 | 6 38 1 00 00 00 00 00 00 00 00 00 00 00 00 0 | 2 227
3 29
8 25
Y
STANDARD
150 DAY
MILK
2 62.1
7 58.5 | EARLY TEST PERIOD PERI | PRODU | CTION AT TEST DAY A GALL CO | AND MIVERAGES DWSI 1 4.1 4.3 4.4 | % PROT. 3. 3 3. 3 | S SUMN MILK 16562 16591 | IARY DILING YEAR FAT 2 65 | PROT. 7 533 8 534 3 536 | %-LEFT HER
6,1,2,3
88.59
94.00
67
68 | 5 00 1 4 14 14 14 14 14 14 14 14 14 14 14 14 | SCHATE
WS 500 50
5
294,500
Ms,000 | TY REASON DELL COLL COLL COLL COLL COLL COLL COLL C | 7.8.5
Over
1.13 M | ANG.
SCC
SCORE
3. 2 | WT. AVC
ACTUAL
SCC
329
253
172 | 12 | (SE) | | DA
WE I G
DA
0
TE:
MONTH E
2-2
3-2 | PERGENT
PERGENT
HTED
ST
ST
SHOPPED
7-11
3-11 | SCC (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 10 NEAREST NUMBER COWS IN HERD ON TEST DAY 159 156 161 | 18
37
1,00
TEST 0
MILL
DAYS IN
149
150
147 | 6 38 1:00) AY AVERACES KING COWS MILK 57. 58. 56. 61. | 2 227
3 29
8 25
Y
STANDARD
1320
150 0AY
MILK
2 62.1
7 58.1
0 61.1 | ZH 31 1. ALL LACTATION EARLY - TEST PERSON PERSON 1 101 1 96 5 93 7 105 | PRODU | DET TEST DAY / GALL CO MILK 46. 2 49. 6 53. 5 | AND M
INVERAGES
TOWNS
3. FAT
4. 1
4. 3
4. 4
3. 7 | % PROT. 3.3 3.3 3.3 | S SUMM
MILK
16562
16591
16602 | 1ARY DILLING YEAR FAT 2 655 658 2 66:3 | PROT. 7 533
8 534
3 536
4 544 | % LEFT HER
6,12,3
810,00
67
68
69 | 12
15 | SCHATE
SCHATE
WS 500 50
PM, SIC
MA, SIC
MA, SIC | TY READO | 7,8.5
OVER
1.12 M | 3. 2
3. 0
2. 9 | 2 WT. AVG
ACTUAL-
SCC 329
253
172
249 | 12 | (SE) | | DA
O
TE
MONTH C
1-2
2-2
3-2
4-2 | минек
РИСОВТ
НТЕО
ОТЕ
Р
ST
ОНОРРЕВ
7-11
3-11
9-11 | DAYS IN TEST PERIOD 29 29 27 34 | 2
10
NEAREST
NUMBER
COWS IN
HERD ON
TEST DAY
159
156
161
159 | 18
37
1,00
TEST 0
MIL
DAYS IN
149
150
147
156 | 6 38 1:
0) AY AVERACES KING COWS MILK 57.
58.
56.
61. | 2 227
3 29
8 25
Y
STANDARD
150 DAY
MILK
2 62.
7 58.
9 61.
2 62. | ZN 31 AL ACTATION PERSON PERSO | PRODU
BILL
81
86
94
98 | DET TEST DAY / GALL CO MILK 46. 2 49. 6 53. 5 59. 8 | AND M
INVERAGES
SWS) * FAT 4.1 4.3 4.4 3.7 3.5 | % PROT. 3.3 3.3 3.3 3.1 | MILK
16562
16591
16602
16848 | IARY DILING YEAR FAT 2 655 1 655 2 66: 3 67- 7 675 | PROT. 7 533 8 534 3 536 4 544 9 552 | % LEFT HIS
6,12,3
88.0W
Md,000
67
68
69
70 | 12
12
14
15
14 | SCHATE SC | 3 PY READO | 7.8.5
Over
1.13 M | 3. 2
3. 0
2. 9
2. 6 | 2 wr. avg
actual
scc
329
253
172
249
277 | 12 | MBE HE | | DA
O TE:
WONTH C
2-2
3-2
4-2
5-3 | минек
РИМОВН
НТЕО
КТЕ
В 5
Т ЭНОРРЕВ
7-11
3-11
9-11 | SCC (II
DAYS
N
TEST
PERNOD
29
29
27
34
31 | 2
10
NEAREST
NUMBER
COWS IN
HERD ON
TEST DAY
159
156
161
159
163 | 18
37
1,000
TEST 0
MILE
149
150
147
156 | 6 38 1:
0) AY AVERACES KING COWS MILK 57.
58.
56.
61. | 2 227
3 29
8 25
Y
STANDARD-12ED
150 DAY
MEK
2 62.1
7 58.1
0 61.1
2 62.2
9 58.3 | 2N T T T T
T T T T T T T T T T T T T T T | PRODU
MILK
81
86
94
98
98 | OET TEST DAY / GALL CO MILK 46. 2 49. 6 53. 5 59. 8 | AND M NVERAGES 3VWS1 ** FAT 4.1 4.3 4.4 3.7 3.5 3.2 | % PROT. 3.3 3.3 3.3 3.1 3.1 | S SUMIN
MILX
16562
16591
16602
16848
1713 | SARY DILING YEAR FAT | PROT. 7 533 8 534 544 544 9 552 9 558 | %LEFT HER
6.12.3
98.000
98.000
67
68
69
70
67 | 12
12
14
15 | 90000100000000000000000000000000000000 | 3 PY READO | 7,85
0988
113 M
7
3
2
5 | 3. 2
3. 0
2. 9
2. 6 | 2 wr. ave actual scc 329 253 172 249 277 258 | 12 | MBE HE | | SCORE > 3.9 WE I G DA O TE MONTH E 2-2 3-2 4-2 5-3 6-2 | PROPERTY OF THE T | DAYS N TEST PERIOD 29 29 27 34 31 32 | 2
10
NEAREST
NUMEER
COWS IN
HERD ON
159
156
161
159
163
166 | 18 37 1,000 1EST 0 MELK 149 150 147 156 178 189 | 6 38 1: 0) ANY AMERICAGES KING COWS MILK 57. 58. 56. 61. 60. 53. 49. | 2 227
3 29
8 25
Y
STANDARD 1220
150 DAY
150 DAY
2 62.
0 61.
7 58.
0 61.
2 62.
3 55. | 2N 1. 31 1. ACTATION FERRILY PERSIST. INDEX. 1 101 1 9 3 7 105 7 103 3 94 6 95 | PRODU
MILK
81
86
94
98
98
93 | OCT SO 1 TEST DAY MILK 46. 2 49. 6 53. 5 59. 8 50. 4 | AND M NVERAGES TAVES ** FAT 4. 1 4. 3 4. 4 3. 7 3. 5 3. 2 3. 4 | N PROT. 3.3 3.3 3.3 3.1 3.1 | S SUMM
MILK
16562
16591
16602
16848
17133 | FAT 2 65 65 67 67 67 67 67 67 67 67 67 67 67 67 67 | PROT. 7 533 8 534 544 544 9 552 9 558 6 560 | % LEFT HER
6,123
88,000
80,000
67
68
69
70
67
80 | 12
12
15
14 | 30MATE 95 500 500 500 500 500 500 500 500 500 | 3 PY REASON BELL SELF SELF SELF SELF SELF SELF SELF S | 7,85
0498
113 M
7
3
2
5
6
6 | 3. 2
3. 0
2. 9
2. 6
2. 9
2. 4 | 2 WT. AVC ACTUAL SCC 329 253 172 249 277 258 236 | 12 | MBE HE | | DA
DA
DA
DA
TE:
MONTH E
1-2
2-2
3-2
4-2
5-3
6-2
7-2 | тисакт
НТЕО
оноврем
7-11
3-11
9-11
1-11
8-11
7-11 | SCC (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 10 NEARES' NUMBER COWS IN HERD ON TEST 0AV 159 156 161 159 163 166 168 173 | 18 37 1,000 1551 0,000 | 6 38 1: 0) AY AVERAGES KRISC COWS MILK 57. 58. 56. 61. 60. 53. 49. | 2 227 3 29 8 25 Y STANDARD IDENTIFY 180 DAY MILK 2 62. 7 58. 10 61. 2 62. 3 55. 1 52. 1 52. | ZN 37 ALACTATION TEST PERIODEX 1 101 196 5 93 7 105 7 103 3 94 6 95 0 90 | PRODU MILE 81 86 94 98 93 87 | OCT TION A TEST DAY A GALL CO MILK 46. 2 49. 6 53. 5 59. 8 50. 4 42. 8 37. 2 | AND M
WERAGES
DWS
3. FAT
4. 1
4. 3
4. 4
3. 7
3. 5
3. 2
3. 4
3. 3 | % PROT. 3.3 3.3 3.3 3.1 3.1 3.1 3.0 | S SUMM
MILK
16562
16591
16602
16848
1713
17368
17448 | FAT 2 65: 65: 65: 67: 67: 67: 67: 67: 67: 67: 67: 67: 67 | PROT. 7 533 8 534 544 544 9 552 9 558 6 560 2 561 | % LEFT HER
6,12,3
88,000
67
68
69
70
67
80
65 | 12
12
15
14
15
10
19 | 30MATE 85 500 500 500 500 500 500 500 500 500 | 3 PY REASON BELL COLUMN C | 7 3 3 2 5 6 6 6 6 8 | 3. 2
3. 0
2. 9
2. 6
2. 9
2. 4
2. 9 | 2 WT. AVC ACTUAL SCC 329 253 172 249 277 258 236 401 | 12 | 50 | | DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
D | тенски
НТЕО
оноврев
7-11
3-11
9-11
1-11
8-11
7-11
4-11 | SCC (1) DAYS N TEST FERNOD 29 27 34 31 32 28 29 28 | 2
10
NEAREST
NUMBER
COW'S IN
HEND ON
159
156
161
159
163
166
168
173
166 | 18 37 1,000 1551 0,000 | 6 38 1. 0) AY AVERACES REAC COWS MILK 57. 58. 56. 61. 60. 53. 49. 444. 49. | 2 227
3 29
8 25
YI
STANDAHD 1920
1920 MIN.
2 62.
7 58.:
7 58.:
9 0 61.
7 58.:
9 58.:
1 52.6
1 55.1
1 52.6
8 57. | ZN T T T T T T T T T T T T T T T T T T T | PRODU
MILE
81
86
94
98
93
87
84
87 | CTION /
TEST DAY /
(ALL CO
MILE
46. 2
49. 6
53. 5
59. 8
50. 4
42. 8
37. 2
43. 0 | AND M
WERAGES
DWS
3. FAT
4. 1
4. 3
4. 4
3. 7
3. 5
3. 2
3. 4
3. 3
3. 4 | % PROT. 3.3 3.3 3.1 3.1 3.1 3.0 3.2 | S SUMM
MILK
16562
16591
16602
16844
1713
17365
17444
17484 | SAT | PROT. 7 533 8 5344 544 544 549 558 6 560 2 561 4 559 | 6.12.3
88.09
67
68
69
70
67
80
65
49 | 12
12
12
15
14
15
10
19
24 | 9 8 6 8 1 1 3 1 3 1 3 | 3 PREADOR SHE | 7/8.5
COVER
113 M
7
3
2
5
6
6
6
6
8
4 | 3. 2
3. 0
2. 9
2. 6
2. 9
2. 4
2. 9 | 2 WT. AVC. ACTUAL SCC 329 253 172 249 277 258 236 401 210 | 12 | 50 | | DA O TE: WE I G DA O TE: WONTH E 1-2 2-2 3-2 4-2 5-3 6-2 7-2 8-2 9-2 | те | SCC (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2
10
NEAREST
NUMBER
COWS IN
HERD CM
159
156
161
159
163
166
168
173
166
159 | 18 37 1,000 1551 0 1,000 1551 0 1,000 1551 0 1,000 1551 0 1,000 1551 0 1,000 1551 0 1,000 1551 1551 | 6 38 1. 00) AY AVERACES RISIC COWES 56. 56. 61. 60. 53. 49. 44. 49. 49. | 2 227 3 29 3 29 5 25 STANDAHO 150 DAY | ZN J. T. | PRODU
*** 81
86
94
98
98
98
98
98
98 | CTION / TEST DAY / TEST DAY / GALL CO MILK 46.2 49.6 53.5 59.8 50.4 42.8 37.2 43.0 43.7 | AND M
INTERACES
DWS1
3. FAT
4. 1
4. 3
7
3. 7
3. 5
3. 2
3. 4
3. 3
3. 4
3. 7 | * PROT. 3.3 3.3 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 | S SUMIV
MILK
16562
16591
16602
1713
1736
17448
17484
1742
17472 | DIARY DILING YEAR FAT 2 65- 1 65- 2 66- 3 67- 5 67- 5 67- 5 67- 4 66- 2 66- | PROT. 7 533 8 5344 544 544 559 558 6 560 2 561 4 559 2 561 | 6,123
6,123
81,000
67
68
69
70
67
80
65
49
64
58 | 12
12
15
14
15
10
19
19
19
19
19
19
19
19
19 | 9 8 6 8 1 4 1 3 1 3 1 2 2 | 3 PRIADO DEL SOLUTION
DE CONTROL | 7
3
2
5
6
6
6
8
4 | AVC. SCC SCORE 3. 2 3. 0 2. 9 2. 6 2. 9 2. 4 2. 9 3. 5 2. 9 3. 4 | 2 wr. ave actual sec 329 253 172 249 277 258 236 401 210 356 | 12 | 50 | | DA
0
1-2
2-2
3-2
4-2
5-3
6-2
7-2
8-2
9-2
10-2 | 7-11
3-11
9-11
1-11
8-11
7-11
4-11
9-11 | DAYS N TEST PERIOD 29 29 27 34 31 322 28 29 28 36 26 | 2
10
NEARES'
NUMBER
COWS IN
HERD ON
TEST DAY
159
161
169
163
166
168
173
166
168
173
166
159 | 18 37 1,000 1551 0 | 6 38 1:00) AT AMERICACES SERVICE COMB SERVICE COMB SERVICE COMB SERVICE COMB SERVICE STATE SERVICE SER | 2 227 3 29 8 25 STANDAHD 1027 1027 1027 1027 1027 1027 1027 1027 | ZN 31 T T T T T T T T T T T T T T T T T T | PRODU
MILK
81
86
94
98
93
87
84
87 | CTION / VEST DAY VES | AND M
VERACES
SAMS
3. FAT
4. 1
4. 3
4. 4
3. 7
3. 5
3. 2
3. 4
3. 3
3. 4
3. 7
4. 2 | % PROT. 3. 3
3. 3
3. 3
3. 1
3. 1
3. 1
3. 1
3. | S SUMN
MILK
16562
16591
16602
16844
1713
17365
17445
17424
17427
17493 | IARY DILING YEAR 2 655 1 655 2 663 3 674 7 675 6 79 4 664 2 663 3 663 | RLY PROT. 7 533 8 534 544 544 9 552 561 4 559 2 561 3 562 | 6153
6153
6169
69
70
67
80
65
49
64
58 | 12
15
14
15
10
19
24
15
17
22 | 30MATE SON TO SO S | 33 CHILDREN PREADER CONT. CONT | 7
3
2
5
6
6
6
6
8
4
6 | AVC. SCC SCORE 3. 2 3. 0 2. 9 2. 6 2. 9 2. 4 2. 9 3. 5 2. 9 3. 4 3. 1 | 2 wr. ave actual sec 329 253 172 249 277 258 236 401 210 356 309 | 12 | 50 | | DA
0
1-2
2-2
3-2
4-2
5-3
6-2
7-2
8-2
9-2
11-2 | помет
Ресовт
НТЕО
ОТЕ
Р | SCC (II
DAYS
N
TEST
PERIOD
29
29
27
34
31
32
28
29
28
36
26
29 | 2
10
NEARES'
NUMBER
COWNS IN 14HD CN
1550 CN/
1550 CN/
1550 CN/
1550 CN/
1550 CN/
1660 168
173
1660
159
159
163
1661
159
159
168 | 18 37 1,000 1551 0,000 | 6 38 1. 0) MILK 57. 58. 61. 60. 53. 49. 49. 49. 50. 51. | 2 227 3 29 8 25 STANDARD 150 DAY 100 | 28 T. A. C. | PRODU
MILE
81
86
94
98
93
87
84
87
80 | Der Test Day / Male Communication of the Communicat | AND M
WERAGES
SWIST
1 4.1
4.3
4.4
3.7
3.5
3.2
3.4
3.3
3.4
3.7
4.2
4.3 | % PRIOT. 3.3 3.3 3.3 3.1 3.1 3.1 3.0 3.2 3.2 3.4 3.4 | S SUMIN
MILK
16562
16592
16692
16845
1713
17365
17445
17484
1742
17472
17492
17492
17492 | FAT 2 65 65 67 67 67 67 66 66 66 66 66 66 66 66 66 | RIY
(AZ)
PROT.
7 533
8 534
4 544
9 552
9 558
6 560
2 561
3 562
8 563 | 61 65 | 12
15
14
15
10
19
24
15
17
22
21 | 9 8 6 8 1 4 13 13 12 7 9 | 33 TY READIC COLUMN 1 110 M 6 8 6 5 4 4 3 6 6 4 4 7 3 2 2 | 7
3
2
5
6
6
6
8
4
6
7 | 3. 2
3. 0
2. 9
2. 6
2. 9
3. 5
2. 9
3. 5
2. 9
3. 4 | 2 WT. AVC. ACTUAL SCC 32.9 25.3 1.72 24.9 27.7 25.8 23.6 40.1 21.0 35.6 30.9 1.81 | 12 | 5 | | DA
0
1-2
2-2
3-2
4-2
5-3
6-2
7-2
8-2
9-2
10-2 | помет
Ресовт
НТЕО
ОТЕ
Р | DAYS N TEST PERIOD 29 29 27 34 31 322 28 29 28 36 26 | 2
10
NEARES'
NUMBER
COWS IN
HERD ON
TEST DAY
159
161
169
163
166
168
173
166
168
173
166
159 | 18 37 1,000 1551 0 | 6 38 1. 0) MILK 57. 58. 61. 60. 53. 49. 49. 49. 50. 51. | 2 227 3 29 8 25 STANDARD 150 DAY 100 | 28 T. A. C. | PRODU
MILK
81
86
94
98
93
87
84
87 | CTION / VEST DAY VES | AND M
VERACES
SWIST 4.1 4.3 4.4 3.7 3.5 3.2 3.4 3.3 3.4 3.7 4.2 4.3 | % PROT. 3. 3
3. 3
3. 3
3. 1
3. 1
3. 1
3. 1
3. | S
SUMN
MILK
16562
16591
16602
16844
1713
17365
17445
17424
17427
17493 | FAT 2 65 65 67 67 67 67 66 66 66 66 66 66 66 66 66 | RIY
(AZ)
PROT.
7 533
8 534
4 544
9 552
9 558
6 560
2 561
3 562
8 563 | 6153
6153
6169
69
70
67
80
65
49
64
58 | 12
15
14
15
10
19
24
15
17
22 | 30MATE SON TO SO S | 33 CHILDREN PREADER CONT. CONT | 7
3
2
5
6
6
6
6
8
4
6 | AVC. SCC SCORE 3. 2 3. 0 2. 9 2. 6 2. 9 2. 4 2. 9 3. 5 2. 9 3. 4 3. 1 | 2 WT. AVC. ACTUAL SCC 32.9 25.3 1.72 24.9 27.7 25.8 23.6 40.1 21.0 35.6 30.9 1.81 | 12 | 50 | | DA
0
1-2
2-2
3-2
4-2
5-3
6-2
7-2
8-2
9-2
11-2 | NOME: PROST HTED ST 11 3-11 9-11 1-11 8-11 7-11 5-11 3-11 7-11 3-11 7-11 | SCC (II
DAYS
N
TEST
PERIOD
29
29
27
34
31
32
28
29
28
36
26
29 | 2
10
NEARES'
NUMBER
COWNS IN 14HD CN
1550 CN/
1550 CN/
1550 CN/
1550 CN/
1550 CN/
1660 168
173
1660
159
159
163
1661
159
159
168 | 18 37 1,000 1551 0,000 | 6 38 1. 0) MILK 57. 58. 56. 61. 60. 49. 49. 49. 50. 60. | 2 227 3 29 8 25 YY STANDAND BLOWN | EARLY PERSON PERSON TO 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | PRODU
MILE
81
86
94
98
93
87
84
87
80 | Der Test Day / Male Communication of the Communicat | AND M MERAGES TOWNS 3. FAT 4. 1 4. 3 4. 4 3. 7 3. 5 3. 2 3. 3 4. 4 3. 7 4. 2 4. 3 3. 9 | % PRIOT. 3.3 3.3 3.3 3.1 3.1 3.1 3.0 3.2 3.2 3.4 3.4 | S SUMIN
MILK
16562
16592
16692
16845
1713
17365
17445
17484
1742
17472
17492
17492
17492 | FAT 2 65 65 67 67 67 67 66 66 66 66 66 66 66 66 66 | RIY
(AZ)
PROT.
7 533
8 534
4 544
9 552
9 558
6 560
2 561
3 562
8 563 | 61 65 | 12
15
14
15
10
19
24
15
17
22
21 | 9 8 6 8 1 4 13 13 12 7 9 | 33 TY READIC COLUMN 1 110 M 6 8 6 5 4 4 3 6 6 4 4 7 3 2 2 | 7
3
2
5
6
6
6
8
4
6
7 | 3. 2
3. 0
2. 9
2. 6
2. 9
3. 5
2. 9
3. 5
2. 9
3. 4 | 2 WT. AVC ACTUAL SCC 329 258 236 401 210 356 369 181 228 | 12 | 50 | averaged by stage of lactation and lactation number on your DHI-202 Herd Summary to manage your dairy herd. #### Stage of Lactation Profile for Milk Production Lexington, KY 40506 For the current test day, the stage of lactation profile divides the milking cows into 5 groups by their number of days in milk for the current lactation: the first 40 days in milk, 41 to 100 days, #### Cooperative Extension Service MARTIN-GATTON COLLEGE OF AGRICULTURE, FOOD AND ENVIRONMENT Agriculture and Natural Resources Family and Consumer Sciences 4-H Youth Development Community and Economic Development Educational programs of Kentucky Cooperative Extension serve all people regardless of economic or social status and will not discriminate on the basis of race, color, ethnic origin, national origin, creed, religion, political belief, sex, sexual orientation, gender identity, gender expression, pregnancy, marital status, genetic information, age, veteran status, physical or mental disability or reprisal or retaliation for prior civil rights activity. Reasonable accommodation of disability may be available with prior notice. Program information may be made available in languages other than English. University of Kentucky, Kentucky State University, U.S. Department of Agriculture, and Kentucky Counties, Cooperating. ## EARLY DETECTION OF POTENTIAL NUTRITION AND MANAGEMENT PROBLEMS USING MONTHLY MILK AND COMPOSITION DATA (CONT) 101 to 199 days, 200 to 305 days, and the average for all milking cows. Within each stage of lactation, averages for milk production are calculated separately for first lactation heifers, second lactation cows, and mature (third and greater lactation) cows. It is important to remember these values reflect averages only for the current test day. The number of cows within each grouping also is listed in the table. When a small number of cows are included in these averages, the data should be used with caution. #### Using this information: With a normal lactation curve (Figure 2), dairy cows should peak in production during the 41 to 100 days in milk category on the DHI-202 Stage of Lactation Profile and slowly decline after this stage of lactation. For every pound higher a cow peaks, they can produce 200 to 250 lbs more milk over this lactation. Thus, getting cows to peak, hold that peak (known as persistency), and then slowly decline is important in optimizing milk production and hopefully profitability. This summary is a starting place to detect potential problems. If First-calf heifers have more persistent lactation curves and usually peak in milk production at 75% of mature covers at 75% of mature cows. 14,000 records from 7 Western Canadian herds showed that mature cows peak in 8 weeks of lactation and first calf heifers by 14 weeks. production in this group of cows is not as high as expected, evaluations should be made of not only the current nutrition and management program, but also the transition programs for cows from the dry or heifer lot into the milking herd. To look at the lactation curves of individual cows and truly analyze what is occurring in your herd, you will need to look at the individual cow production records either on your monthly report showing an individual cow's monthly milk production (i.e. DHI-210 or 220) or at lactation curves for individual cows which can be graphed in PC DART. ### Stage of lactation profiles for milk fat and protein percentages For each group of cows, the average milk fat and protein percentages are calculated for each stage of lactation and lactation number. Again, these values reflect milk composition data for cows within each of these categories for the current test day. These data can be used in early detection of potential problems such as ketosis/fatty liver in early lactation cows and/or ruminal acidosis (i.e. nutritional problems such as lack of cud chewing). Normal values should be within 0.3% of the breed average for milk fat and 0.2% for milk protein percentages. If values are outside this range, make sure that samples were correctly mixed when sampled. Samples that were not properly mixed (higher or lower values) will incorrectly reflect the content of milk fat and protein in the analyzed samples. ### Using this information: <u>First 40 days of lactation</u>- Getting cows to eat well in early lactation is critical in preventing ketosis and fatty liver. Relationship studies have shown that cows with ketosis have increased incidences of metritis, displaced abomasums, and mastitis and decreased reproductive efficiency. Often times, these cows transition poorly from the dry lot into the milking herd resulting in rapid mobilization of body fat in early lactation. Fat accumulates in the liver, reducing the liver's ability to make precursors for milk production and milk components. ## EARLY DETECTION OF POTENTIAL NUTRITION AND MANAGEMENT PROBLEMS USING MONTHLY MILK AND COMPOSITION DATA (CONT) Milk fat percentages often times are elevated in these cows. Some scientists have recommended that no more than 10% of Holsteins in early lactation should have butterfat percentages greater than 4.5 to 5% during the first 40 to 50 days in milk. Sometimes the highest levels are seen in certain groups of cows (mature cows or heifers) which are having trouble effectively transitioning into the milking herd. Figure 3 shows an example graph of butterfat percentages for cows within the first 60 days in milk on a test date. In this example, 25% of the cows have butterfat concentrations greater than or equal to 4.5% (12 out of 48 cows). The high number of cows in this category puts up flags that this situation should be reviewed more closely and changes possibility made. Of these cows with higher than
expected butterfat, 7 of the 12 are first calf heifers. This indicates the transition of heifers into the herd may need to be re-evaluated to see if changes should and can be made. If the majority of the cows seen with high butterfat had been mature cows, a review of the transition programs for these cows would have been targeted. Another way to evaluate management programs using milk components is to look at the ratio of milk fat % to milk protein %. Drs. Mike Overton and Duffield have suggested that in herds where more than 40% of the cows have a ratio greater than 1.39, transition programs for cows back into the herd should be reexamined. In the graph shown in Figure 4, 28 out of 48 cows have ratios greater than 1.39 or 58% of the herd with 17 of the 28 cows with elevated ratios being first calf heifers (55% of the first calf heifers had elevated ratios). As shared by these scientists, this evaluation tool is not perfect but it allows one to quickly look at the herd and the transition program. #### Depressed milk fat test and milk fat to protein ratios: Lower than expected milk fat percentages or milk fat to protein ratios can be an early indicator of nutrition and/or management problems. For example, decreases in milk fat content and/or fat to protein ratios during heat stress may be an indicator that heat stress abatement measures need to be re-evaluated and changes made. Also, ruminal acidosis is often times associated with lower than expected butterfat tests. Ruminal acidosis is associated with a drop in the pH of the rumen contents. This can be seen in diets that do not contain adequate amounts of effective fiber (chew factor), cows are sorting the TMR, or too much starch is in the diet to itemize just a few causes. For more information, please see the article entitled, "How Can You Get More Pounds of Milkfat from Your Dairy Herd?" and "Day-to-Day Chores Impact Pounds of Milkfat and thus Milk Income". # EARLY DETECTION OF POTENTIAL NUTRITION AND MANAGEMENT PROBLEMS USING MONTHLY MILK AND COMPOSITION DATA (CONT) ## **Bottom Line:** Production records are a great asset in early detection of not only problem areas within management protocols but as importantly to help managers and employees understand that they are doing a good job. By taking a few minutes to review your DHI -202 Herd Summary, hopefully you can see how you are progressing to meet your goals and prevent detours in your path.